

A cesium-free, compact, highly efficient, and extremely safe negative ion source

Development of a negative ion generator by high-frequency heating of powder particles

- Cesium-free and high negative ion generation efficiency
- Safe because cesium is not used for electron donors
- The negative ion generation area is increased more than 10 times compared to the conventional method.

Keywords: Negative ion source, radio frequency heating, low-work function materials, cesium-free, high efficiency

Place the powder particles of low-work function materials in the high-frequency waveguide cavity

- Powder particles are heated by eddy currents
- · Plasma is generated

Inject sample gas into plasma

- · Gas molecules are excited
- The gas molecules are contacted with low-work function material

Highly efficient generation of negative ions

Proof-of-principle test equipment

Conventional technology

Sample gas molecules collide with plasma electrons

Contact with cesium on the wall

Problems

- Cesium Utilization
- Small reaction area

Proposed technology

Sample gas molecules in contact with hot powder particles of lowwork function materials

Advantages

- · Cesium-free
- Larger reaction area

Stage of Technology

Issue

Applied research

Practical development

Production

Commercialization

Fields of use

- · Ion beam analysis and accelerator mass spectrometry
- · PET and other medical radiation fields
- · Semiconductor integrated circuit fabrication processes

Information of intellectual property

Pub. No. US2023/0256408 Pub. No. EP4231325

Technical