Project Number :2024B-E19 Program Title (English) : Investigating the alloying behavior of platinum-tin alloy on the alkaline-earth metal doped Al₂O₃ supports under the oxidative propane dehydrogenation in the presence of CO₂. Username (English) : Y. Yun¹⁾, I. Chung¹⁾, J. Oh¹⁾, J. An¹⁾, S. Kim¹⁾, H. Roh¹⁾, C. Lim¹⁾, O. Seo²⁾ Affiliation (English) :1) Pohang University of Science and Technology, 2) JASRI Key words: Oxidative propane dehydrogenation, CO₂, alkaline–earth metal, PtSn, alloy ## 1. Summary In this study, we systematically investigated the influence of alkaline-earth metals (Mg, Ca, Sr, and Ba) as promoters for PtSn/Al₂O₃ catalysts. Among the tested metals, Sr provided the most significant improvement in catalyst performance. XAS analysis showed that Sr effectively prevented the dealloying of the Pt–Sn alloy, thereby demonstrating high stability during reaction conditions. These findings highlight the unique stabilizing role of Sr in promoting catalyst stability under ODPC condition. ## 2. Experimental In-situ XAS experiments were conducted on PtSn/Al₂O₃ and Sr-modified PtSn/Al₂O₃ catalysts. The experimental conditions employed for in-situ XAS measurements under H₂ reduction and ODPC reaction conditions (C₃H₈+CO₂) are illustrated in Figure 1. Figure 1. Temperature and gas conditions for in-situ XAS measurements on alkaline-earth modified $PtSn/Al_2O_3$ catalysts. ## 3. Results and Discussion In–situ XAS measurements were performed on the Sr-modified PtSn/Al₂O₃ catalysts at Pt L₃ and Sn K edge under H₂ and ODPC reaction condition at reaction temperature. Under H₂ reduction conditions, both catalysts exhibited the formation of the Pt–Sn alloy, which is a highly active species for the ODPC reaction. Under the reaction condition, Sr-modified catalysts retained PtSn alloy which formed during reduction. In contrast, the alloy in the unmodified catalyst decomposed into metallic Pt upon CO₂ introduction. This suggests that Sr promotes CO₂ activation, thereby stabilizing the alloy phase, enhancing catalytic activity and stability during ODPC conditions. Therefore, Sr emerges as a highly promising promoter for improving both catalyst activity and stability. ## 4. Others This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) No. 2021R1A5A1084921.