課題番号	:2016B-E12
利用課題名(日本語)	:全固体電池反応場における電極/固体電解質界面構造のその場観察
Program Title (English)	: In situ observation of electrode/solid electrolyte interface in all-solid-state
lithium battery	
利用者名(日本語)	: <u>菅野了次</u> ^{1),2)} , 平山雅章 ^{1),2)} , 鈴木耕太 ^{1),2)} , 田港 聡 ¹⁾ , 引間和浩 ¹⁾ , 澁澤拓海 ²⁾ ,
荒木友哉 1)	
Username (English)	: <u>R. Kanno^{1),2)}, M. Hirayama^{1),2)}, K. Suzuki^{1),2)}, S. Taminato¹⁾, K. Hikima¹⁾,</u>
	T. Shibusawa ²⁾ , Y.Araki ¹⁾
所属名(日本語)	:1) 東京工業大学 物質理工学院 応用化学系,2)東京工業大学 大学院総合理工学研
究科 物質電子化学専攻	
Affiliation (English)	: 1) School of Materials and chemical Technology, Department of Chemical Science

and Engineering, Tokyo Institute of Technology, 2) Department of Chemical Science Graduate School of Science and Engineering, Tokyo Institute of Technology

<u>1. 概要(Summary)</u>

2016A 期までに非晶質固体電解質 Li3PO4 を用いた 全固体電池の電極/電解質界面の解析を進め,充放電中 の相転移挙動が液系電池とは異なることを明らかに した.本課題では、結晶性の(La,Li)TiO3 固体電解質 を Li2MnO3 電極上に堆積させ、ヘテロエピタキシャ ル界面における電極と電解質構造の検出を行った.液 系,ガラス系電解質と界面構造を比較することで、界 面挙動の変化と界面構成材料の相関を見出すことを 目的とした.開回路状態の XRD 測定を行い,電池作 製前後の Li2MnO3 結晶構造変化を検出した. その結 果, (La,Li)TiO3 を堆積させヘテロエピタキシャル界 面を形成させることにより, 遷移金属層内の長周期配 列が乱れることが分かった. 今回測定を行った全固体 電池は、母構造を維持したまま界面形成による構造変 化を示したため、リチウム脱挿入を伴う充放電中の挙 動も, 有機電解液や非晶質固体電解質との界面と異な る可能性が示唆された.

<u>2. 実験(Experimental)</u>

パルスレーザー堆積法により,SrTiO₃(111)基板上 に集電体 SrRuO₃(111)および Li₂MnO₃(001)薄膜を合 成した[1]. Li₂MnO₃は650 °C,酸素圧 75 Pa の条件 で製膜し,薄膜の組成を制御した[1].電極膜上に (La,Li)TiO₃を750 °C,酸素圧 6.6 Pa の条件で約10 nm 程度堆積させた.薄膜の配向は薄膜X線回折測定 で同定した. 膜厚は薄膜 X 線反射率曲線の解析により求 めた. さらに非晶質 Li₃PO₄, 負極 Li を堆積させること で,薄膜型全固体電池を得た. 表面 X 線回折測定は BL14B1 に設置された多軸回折系を用いて行った. NaI シンチレーションカウンターを検出器とし,入射 X 線エ ネルギーは 15 keV とした. Li₂MnO₃薄膜の 001, -202 反射を out-of-plane, 020,060 反射を in-plane 測定でそ れぞれ検出した. 真空型の電気化学セルに試料を固定し, ポテンショスタットで薄膜電極の充放電状態を制御し た.

3. 結果と考察(Results and Discussion)

図1に今回構築した薄膜電池の模式図と、測定に用い たセルの構成図を示す.セル密閉はICF接続で行い,高 真空条件下での測定に対応可能にした.ガス循環条件で の測定も可能となっており,実験条件の拡張性を確保し た.作製した薄膜電池はSrTiO₃(111)基板上に集電体, 電極がそれぞれ約 30,40 nm 堆積されている.その上の 結晶性(La,Li)TiO₃は 10 nm 程度の厚さを有し,ヘテロ エピタキシャル界面を形成している.その上のガラス電 解質,負極Liは共に1µm 程度であり,これら五層の膜 からなる全固体電池を合成した.図2 に開回路状態の Li₂MnO₃(001)薄膜のX線回折図形を示す.Out-of-plane の回折測定では001,-202 反射に帰属される鋭いピーク を観測し,合成したLi₂MnO₃薄膜のエピタキシャル成 長を確認した.一方,in-plane 回折測定では060 反射の み回折ピークが観測され、020 反射のピークは観測されなかった. X 線侵入深さを制御した測定も行ったが、いずれの深さ領域においても回折ピークは検出されなかった.020 反射は層状岩塩型構造の遷移金属層中で MnO_6 八面体と LiO_6 八面体が規則配列することで形成する超構造に対応した超格子ピークである.このピークは Li_2MnO_3 薄膜のみを合成した場合や、

Li2MnO3 電極上にガラス電解質のみを堆積させた場 合には観測されている.このことから、(La,Li)TiO3 を堆積させヘテロエピタキシャル界面を形成させる ことにより, 遷移金属層中の長周期配列が乱れること が明らかになった. 一方で, 001, -202 および 060 反 射は明確な回折ピークが観測されていることから, Li2MnO3の層状構造は維持されていることが分かっ た. また, 各反射から算出した面間隔を(La,Li)TiO₃ 堆積前後で比較すると, doo1が4%程度増大しており, c 軸が伸張することが分かった. 薄膜電池構築後の in-plane 回折測定は実験室の Cu Ka線源を用いた X 線回折装置では測定が困難であり,高輝度な放射光測 定により初めてヘテロ界面の観測が可能となった. 今 回測定を行った Li2MnO3 は母構造を維持し、界面形 成による構造変化を示したため,充放電中の挙動にお いても液系やガラス系電解質との界面と異なる可能 性がある. 今後, 構築した全固体薄膜電池の充放電中 の挙動を解析することで、界面挙動の変化と界面構成 材料の相関を明らかにする.

<u>4. その他・特記事項 (Others)</u>

本研究の一部は JST, ALCA-SPRING および科研費 (新学術領域研究)と科研費(基盤A)の助成を得て 行った。

参考文献

[1] S. Taminato *et al.*, *Chem. Commun.*, 51, 1673-1676 (2015).

・共同研究者 田村和久(日本原子力研究開発機構)

図 1. 表面 X 線回折測定に用いた測定系の概観.

図 2. 開回路状態における Li₂MnO₃(001)薄膜の X 線回 折図形.