課題番号	:2015B-E11
利用課題名(日本語)	:ヨウ化錫流体相内での密度極大の存在検証
Program Title (English)	: Verification of the existence of the state with maximum density in fluid ${\rm SnI}_4$
利用者名(日本語)	: <u>渕崎員弘</u> ¹⁾ , 大村彩子 ²⁾ , 西田圭佑 ³⁾ , 鈴木昭夫 ⁴⁾ , 坂上貴尋 ¹⁾ ,
	西村光仙 ⁵⁾ ,浜谷望 ⁶⁾
Username (English)	: <u>K. Fuchizaki</u> ¹⁾ , A. Ohmura ²⁾ , K. Nishida ³⁾ , A. Suzuki ⁴⁾ , T. Sakagami ¹⁾ ,
	H. Nishimura ⁵⁾ , N. Hamaya ⁶⁾
所属名(日本語)	:1) 愛媛大学大学院理工学研究科,2) 新潟大学研究推進機構超域学術院,
	3) 東京大学大学院理学研究科, 4) 東北大学大学院理学研究科,
	5) 愛媛大学理学部物理学科, 6) お茶の水女子大学大学院
Affiliation (English)	:1), 5) Department of Physics, Ehime University,
	2) Center for Transdisciplinary Research, Niigata University,
	3) Department of Earth and Planetary Science, The University of Tokyo,
	4) Earth Science, Tohoku University,
	6) Graduate School of Humanities and Sciences, Ochanomizu University
キーワード:ポリアモルフィズム、ヨウ化錫、密度異常	

<u>1. 概要(Summary)</u>

1.2 GPa で融解後、1200 K 付近で X 線透過率の減少 を検出することができた。これは、この付近でヨウ化錫流 体の密度が極大を有するという有力な証拠である。

<u>2. 実験(目的,方法)(Experimental)</u>

1 GPa付近でのヨウ化錫液体状態に密度極大を見出す 試みである。2015Aの利用にて1200 K付近で温度上昇 に伴う X線吸収率低下に減少が現われるところまで押さ えられた。即ち、この温度付近から密度が増加に転じるの ではないかと考えらえる。2015B では比較的低圧下でも、 より高温まで液体を安定保持できるように試料容器に改 良を加え、目的の完全達成を目指した。

今回の測定においても「吸収極大が存在する」とい う事実を示すことを優先したいため、試料容器を二部 屋に仕切らず(各々の部屋に圧力マーカーと試料を充 填する方法を採用せず)、圧力推定にはキャリブレー ションを採用した。即ち、測定パスに沿った荷重一圧 力関係を圧力マーカーのみの回折実験により、別途測 定し、そのパスに沿って試料のみでX線吸収測定を行 う。このように、試料圧力のその場測定が犠牲とはな るが、試料容器に試料をフル充填するため、十分な吸 収実験が行えることを期待した。

BL22XU に設置された高圧発生装置 SMAP-I に溝

付き8mm WC アンビルを装着し、高圧・高温下でのX 線回折と吸収実験を行った。キャリブレーション用の圧 カマーカーには MgO を用いた。i) 0.4 GPa 付近で 1500 Kまで昇温、ii) 1200 Kまで昇温し、その後、温度を保 ったまま 80 ton まで加圧するパスに沿って、29 keV に 単色化した X線の吸収測定を行った。また、キャリブレ ーションとして iii) 30 ton の荷重下で 1000 Kまで昇温 し、温度を保ったまま 100 ton まで加圧するパスと iv) 40 ton 荷重下で 1200 K まで昇温し、その温度で 120 ton まで加圧するパスに沿った MgO の格子定数測定を行っ た。

<u>3. 結果と考察(Results and Discussion)</u>

吸収測定についてはパスi)に沿ったX線吸収率の変化 について報告する。今回の測定によって流体相内で密度 極大が現れる、決定的な証拠が得られた。40トン荷重下 において昇温過程で得られたX線吸収プロファイル中 の極小値を図1に示す。ヨウ化錫の格子定数の値から常 温での圧力は約0.4 GPaと推定される。800K付近の透 過率の突然の跳び(上昇)はヨウ化錫の融解によるもので ある。ヨウ化錫の融解曲線から、融点での圧力は約1.2 GPaと見積もることができる。常温からの圧力上昇は試 料容器蓋に用いている PBN の圧力伝達効果によるもの である。融解後、液体が安定に保持されている限り、ほ ぼ 1.2 GPa の圧力が保たれていると考えてよい。融解 後、昇温にも関わらず X 線透過率は単調に増加するど ころか、1000 K を越えた付近から低下し、1200 K 付 近で極小となる。その後、透過率が増加に転じる。即 ち、流体相内において 1200 K 付近で密度の極大が存 在することを明確に示している。

次に圧力校正について述べる。パス iii)における 1000 K 上の荷重-発生圧力関係を図 2 に示す。1 GPa 付近の圧力校正には NaCl を圧力マーカーに用いるこ とがベストな選択であるが、我々の興味がある温度範 囲が NaCl の融点付近となり、マーカーとして用いる ことができない。そこで、1500 K 付近でも安定して いる MgO をマーカーとして用いた。MgO は、その体 積弾性率の大きさからも分かる通り、「縮みにくい」 物質である。このため、MgO にとっては1GPa 付近 は低圧となり、その指示圧力の誤差が極めて大きくな る。これは校正に用いた3種類の状態方程式の示す圧 力の散らばり方からも明らかである。大まかには試料 容器内での圧力は容器外での圧力のほぼ半分である といえる。そこで、圧力見積もりの現実的な策として は、試料容器外に MgO を置き、この圧力をヨウ化錫 の圧力特性(固相内では状態方程式、融解圧力)で校正 することが考えらえる。

図 2 MgO 格子定数から推定した試料容器内圧力(IM) と試料容器外圧力(OM)。通常使用される Jamieson の、 最近提出された丹下らと河野らの状態方程式による推 定をそれぞれ丸印、三角印と四角印でプロットした。 Jamieson の式は圧力を過小評価し、丹下らのは過大評 価していると考えられる。河野らの式はこれらの中間値 を与えるが、その式の構成上、誤差が大きいという欠点 が見られる。

<u>4. その他・特記事項(Others)</u>

本実験遂行にあたり原子力機構の齋藤寛之博士にご協 カいただいた。本実験は日本学術振興会の科学研究費補 助金(基盤研究(C)26400398)の支援により実施された。