課題番号	:2015A-E17
利用課題名(日本語)	:二体分布関数を利用した Mg1-xTix薄膜の局所構造の調査
Program Title (English)	:Investigating the local structure of $\mathrm{Mg}_{1\text{-}x}\mathrm{Ti}_x$ thin films using the atomic pair
	distribution function technique
利用者名(日本語)	: <u>Kim Hyunjeong¹⁾,</u> 榊 浩司 ¹⁾ ,浅野耕太 ¹⁾ ,町田晃彦 ²⁾ ,綿貫 徹 ²⁾
Username (English)	: <u>H. Kim¹⁾,</u> K. Sakaki ¹⁾ , K. Asano ¹⁾ , A. Machida ²⁾ , T. Watanuki ²⁾
所属名(日本語)	:1) 産業技術総合研究所, 2) 日本原子力研究開発機構
Affiliation (English)	: 1) AIST, 2) JAEA
$\pm - \nabla - \mathbf{k}$: thin film r	pair distribution function

<u>1. 概要(Summary)</u>

Mg_{1-x}Ti_x thin film absorbs a large amount of hydrogen at ambient conditions and this makes it very attractive for potential battery materials [1]. Moreover, its optical properties drastically change when it absorbs hydrogen. The lattice parameters of Mg_{1-x}Ti_x thin film gradually decrease with increasing Ti content, x, as if it is a solid solution alloy [2]. However, its optical and electrical properties are not well explained by such a simple solid solution model. Indeed, a more complex model like nanosized clusters embedded in a large structurally coherent matrix is required [2]. For instance, nanosized Ti-clusters are embedded in a Mg-matrix in a Mg_{0.7}Ti_{0.3} thin film [3]. Although this complex model explains the compelling optical and electrical properties of Mg_{1-x}Ti_x thin films, there has been no clear experimental evidence for the presence of nanosized clusters. In this study, we use the atomic pair distribution function (PDF) analysis [4] on X-ray total scattering data to look for nanosized Ti-clusters in a Mg_{0.7}Ti_{0.3} thin film.

<u>2. 実験(目的,方法)(Experimental)</u>

A Mg_{0.7}Ti_{0.3} thin film capped with a thin Pd layer was deposited on a kapton substrate. The film thickness was 400 nm. The thin film was cut into small pieces and loaded in a cell developed for an in-situ hydrogenation study. Synchrotron X-ray total scattering experiment was carried out at BL22XU at SPring-8 using RA-PDF setup [5]. The X-ray energy was 70.430 keV. Data were collected at room temperature at several different stages of hydrogenation.

<u>3. 結果と考察(Results and Discussion)</u>

The X-ray PDF of the $Mg_{0.7}Ti_{0.3}$ thin film is well explained by a hexagonal close packed (hcp) structural model. At the early stage of hydrogen absorption, changes in the PDF only occur at the low-*r* region (below 30 Å). This indicates that a part of the sample is transformed into a face centered cubic (fcc) structure. On the other hand, the high-*r* region of the PDF (above 30 Å) stays in an hcp structure. This strongly suggests that Ti-clusters (~30 Å in size) are present in the film and transformed into an fcc structure while the Mg-matrix stays in a hcp structure at the early stage of hydrogenation. Further analysis is currently underway.

<u>4. その他・特記事項(Others)</u>

[1] R. A. H. Niessen and P. H. L. Notten, Electrochem. Solid-State Lett. 10, A534-538 (2005).

[2] D. M. Borsa et al., Phys. Rev. B 75, 205408(2007).

[3] A. Baldi et al., Int. J. Hydrogen Energy **34**, 1450-1457 (2009).

[4] T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Press Elsevier, Oxford, England, 2003.

[5] P. J. Chupas et al., J. Appl. Crystallogr. 36, 1342-1347(2003).