RIXS of CuFeO2: Probing the band structure of a copper-based semiconductor as a gateway into the RIXS cross-section for cuprates

Jason HANCOCK¹⁾ Guillaume CHABOT-COUTURE¹⁾ Kenji ISHII²⁾ Ignace JARRIGE²⁾

Noriki TERADA³⁾ Martin GREVEN¹⁾

1)Stanford University 2)JAEA, SPring-8 3)NIMS, Tsukuba

Detailed measurements of the charge-transfer excitations in the 1-10 eV range were performed on the copper based semiconductor CuFeO2 using resonant inelastic X-ray scattering (RIXS). The momentum dependence, scattering geometry dependence, and the incident energy dependence were investigated.

Keywords: CuFeO2, RIXS, charge-transfer, x-ray, momentum-resolved, polarization

1. Purpose

We characterized the band structure of CuFeO2 using resonant inelastic X-ray scattering. This band insulator is a very important compound due to its transparent nature. Using RIXS at the Cu K-edge, it is possible to measure the band dispersion as well as the direct and indirect band gaps of this delafossite. In addition, we carry out a careful incident energy and scattering geometry dependent study of the cross-section to elucidate the properties of RIXS as an experimental technique.

2. Method

To establish the resonance profile of this system, we measured complete incident energy dependence over both the in-plane and the out-of-plane resonances on a fine grid. At the most intense feature, we measured detailed momentum dependence and constructed a dispersion diagram along the high-symmetry directions of the Brillouin zone. To study the internal details of the RIXS cross-section but also of the measured excitations, we looked into scattering geometry dependence, i.e., the combined effects of incident and outgoing photon polarization.

3. Result

The incident energy dependence of the RIXS spectra reveals at least four distinct electronic excitations at the zone center. Theoretical studies of the electronic structure [1] show that the Cu 3d, the Fe 3d, and the O 2p states are within a few eV of the Fermi level and should take part in the observed inter-band transitions. By measuring the momentum dependence of the lowest electronic excitations, we observed both direct and indirect gaps and a clear dispersion of the lowest two inter-band transitions. The lowest-energy feature, at 2 eV, disappears rapidly away from the zone center, suggesting that it is excitonic in nature. The highest-energy excitation is independent of momentum transfer and has an energy-loss value of twice (11eV) the second lowest inelastic feature at 5.5 eV. This suggests that it could consist of the creation of two electron-hole pairs, each with 5.5 eV on average. Measurements of the dispersion of excitations along the L-direction also show a very weak dependence which suggests that the excitations are essentially two-dimensional in nature. Finally, we found that the scattering geometry dependence of the inelastic spectrum is consistent with the '4p-as-spectator' approximation of the 'indirect' RIXS cross section.

4. Conclusion

We have characterized the momentum and incident energy dependence of the RIXS spectrum of the copper-based semiconductor CuFeO2. We observed distinct inelastic features and characterize their dispersion. We expect our measurements of CuFeO2 to generate interest beyond the RIXS community, to lead to a better understanding of the electronic structure of this delafossite, and to improve our understanding of the RIXS cross section as well.

5. Reference

[1] V. R. Galakhov, A. I. Poteryaev, E. Z. Kurmaev, V. I. Anisimov, St. Bartkowski, M. Neumann, Z. W. Lu, B. M. Klein, and Tong-Rong Zhao, Phys. Rev. B 56, 4584 (1997)