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Abstract: The microstructure evolution, accumulation of defects and internal stresses in the
Fe-26Mn-4Si alloy with different engineering strain are investigated by neutron diffraction, TEM,
SEM-EBSD, DSC and mechanical spectroscopy. Transmission electron microscopy shows that
lots of dislocations and stacking faults are formed in both martensitic and austenitic phases in the
Fe-22Mn-3Si samples. The microstrain and dislocation density increase in HCP-martensite and
FCC-austenite in the annealed Fe-26Mn-4Si alloy with increasing tensile strain.
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1. Research Purposes

High-Mn steels have a high damping capacity and good shape memory effect. In this work, the
deformation microstructure and bulk texture evolution as a function of tensile strain in TRIP
high-Mn steel Fe-26Mn-4Si was carefully investigated together with the effect on damping
capacity and martensitic transformation parameter.

2. Experimental Procedures

Tensile tests were carried out with the strain rate of 5 mm/min at room temperature. The gauge
length was 70 mm, thickness, 3 mm and width, 10 mm. Scanning and transmission electron
microscopes (SEM and TEM) were used to investigate deformation microstructure evolution with
increasing tensile deformation. We employed a TESCAN VEGA LMH microscope operating at 20
kV with a LaB6 cathode equipped with electron backscatter diffraction (EBSD), which was made
on the NordlysMax2 detector. The EBSD measurements were carried out at a step size of 0.5 pm.
The samples for SEM observation were electro-polished at 16 V for 50 s in a solution of 90%
glacial acetic acid (CH3COOH) and 10% perchloric acid (HCIO4), and were etched with a 1.2%
K2S20s5 aqueous solution.

To evaluate change in the phase volume fraction, residual stress, microstrain and dislocation
density, five Fe-26Mn-4Si (wt.%) samples with different engineering strain (¢ = 0, 6, 12, 18.5,
22%) and annealed Fe-26Mn-4Si powder (hep, a = 2.5403 A, ¢ = 4.1136 A; fcc, a = 3.5970 A)
were analysed at room temperature with Prof. Bokuchava’s help using FSD time-of-flight Fourier
diffractometer at the IBR-2 reactor (Dubna, Russia). The change in microstrain and dislocation
density in HCP-martensite and FCC-austenite in the annealed Fe-26Mn-4Si alloy with increasing
tensile strain is presented in Fig.2. Consequently, we apply to use angle dispersive neutron
diffraction at JRR-3 to study the effect of tensile deformation on crystallographic texture of
Fe-26Mn-4Si alloy.

3. Results and discussion

The neutron diffraction results obviously demonstrate distinct texture evolution in the
Fe-26Mn-4Si before and after tensile deformation. The microstrain and dislocation density
increase in HCP-martensite and FCC-austenite in the annealed Fe-26Mn-4Si alloy with increasing
tensile strain (Fig. 2). The damping capacity increases with increasing tensile strain, attains a
maximum at strain of 12%, and decreases with further tensile strain.
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Fig. 2. High-resolution neutron diffraction patterns (a), microstrain (b) and dislocation density (c)
of annealed Fe-26Mn-4Si alloy with increasing tensile strain.
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