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Abstract: The microstructure evolution, accumulation of defects and internal stresses in the 
Fe-26Mn-4Si alloy with different engineering strain are investigated by neutron diffraction, TEM, 
SEM-EBSD, DSC and mechanical spectroscopy. Transmission electron microscopy shows that 
lots of dislocations and stacking faults are formed in both martensitic and austenitic phases in the 
Fe-22Mn-3Si samples. The microstrain and dislocation density increase in HCP-martensite and 
FCC-austenite in the annealed Fe-26Mn-4Si alloy with increasing tensile strain. 
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1. Research Purposes 
High-Mn steels have a high damping capacity and good shape memory effect. In this work, the 

deformation microstructure and bulk texture evolution as a function of tensile strain in TRIP 
high-Mn steel Fe-26Mn-4Si was carefully investigated together with the effect on damping 
capacity and martensitic transformation parameter. 
 

2. Experimental Procedures 
Tensile tests were carried out with the strain rate of 5 mm/min at room temperature. The gauge 

length was 70 mm, thickness, 3 mm and width, 10 mm. Scanning and transmission electron 
microscopes (SEM and TEM) were used to investigate deformation microstructure evolution with 
increasing tensile deformation. We employed a TESCAN VEGA LMH microscope operating at 20 
kV with a LaB6 cathode equipped with electron backscatter diffraction (EBSD), which was made 
on the NordlysMax2 detector. The EBSD measurements were carried out at a step size of 0.5 µm. 
The samples for SEM observation were electro-polished at 16 V for 50 s in a solution of 90% 
glacial acetic acid (CH3COOH) and 10% perchloric acid (HClO4), and were etched with a 1.2% 
K2S2O5 aqueous solution. 

To evaluate change in the phase volume fraction, residual stress, microstrain and dislocation 
density, five Fe-26Mn-4Si (wt.%) samples with different engineering strain (  = 0, 6, 12, 18.5, 
22%) and annealed Fe-26Mn-4Si powder (hcp, a ≈ 2.5403 Å, c ≈ 4.1136 Å; fcc, a ≈ 3.5970 Å) 
were analysed at room temperature with Prof. Bokuchava’s help using FSD time-of-flight Fourier 
diffractometer at the IBR-2 reactor (Dubna, Russia). The change in microstrain and dislocation 
density in HCP-martensite and FCC-austenite in the annealed Fe-26Mn-4Si alloy with increasing 
tensile strain is presented in Fig.2. Consequently, we apply to use angle dispersive neutron 
diffraction at JRR-3 to study the effect of tensile deformation on crystallographic texture of     
Fe-26Mn-4Si alloy. 
 

3. Results and discussion 
The neutron diffraction results obviously demonstrate distinct texture evolution in the 

Fe-26Mn-4Si before and after tensile deformation. The microstrain and dislocation density 
increase in HCP-martensite and FCC-austenite in the annealed Fe-26Mn-4Si alloy with increasing 
tensile strain (Fig. 2). The damping capacity increases with increasing tensile strain, attains a 
maximum at strain of 12%, and decreases with further tensile strain.  
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Fig. 2. High-resolution neutron diffraction patterns (a), microstrain (b) and dislocation density (c) 
of annealed Fe-26Mn-4Si alloy with increasing tensile strain. 
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Fig. 1. Reconstructed pole figures of austenite (a) and martensite (b) of annealed Fe-26Mn-4Si 
alloy. 


