ペロブスカイト BiNiO₃の 高圧・低温環境下における電荷不均化の検証

Confirmation of the charge disproportionation in perovskite $BiNiO_3$ at high-pressure and low-temperature conditions

東 正樹¹⁾ 01ga SMIRNOVA ¹⁾ 綿貫 徹²⁾ 町田晃彦²⁾

 ${\bf Masaki} ~ {\bf AZUMA}^{1)} ~~ {\bf Olga} ~ {\bf SMIRNOVA}^{1)} ~~ {\bf Tetsu} ~ {\bf WATANUKI}^{2)} ~~ {\bf Akihiko} ~ {\bf MACHIDA}^{2)}$

^{__1)} 京 都 大 学 化 学 研 究 所 ^{__2)} 日 本 原 子 力 開 発 機 構

BiNi0₃はBi³⁺0.5Bi⁵⁺0.5Ni²⁺0₃という特殊な酸化状態を持つ、絶縁体の三斜晶ペロブスカイト 化合物である。4GPaに加圧すると斜方晶のBi³⁺Ni³⁺0₃金属相に転移する。ダイヤモンドアン ビルセルを用いた回折実験で、4GPaを保ったまま冷却すると、さらに単斜晶へ転移すること を見いだした。

<u>キーワード</u>:ペロブスカイト BiNiO3 電化不均化 金属絶縁体転移

1. 目的

BiNi0₃は高圧下で合成されるペロブスカイト化合物で、常圧・室温でビスマスイオンが 3 価と 5 価に不均化した Bi³⁺_{0.5}Bi⁵⁺_{0.5}Ni²⁺O₃という特殊な酸化状態を持つ絶縁体である[1]。粉 末中性子回折を用いた構造解析の結果、4GPaで Bi⁵⁺とNi²⁺の間で電荷移動が起こり、Bi³⁺Ni³⁺O₃ の酸化状態を持つ金属に転移することがわかった[2]。一方、Ni³⁺を含むペロブスカイト RNiO₃(R=Y, Lu-Pr)においては、2Ni³⁺→Ni²⁺+Ni⁴⁺で表される電荷不均化に起因する金属絶縁体 転移が生じることが知られている。このため、BiNiO₃においても高圧・低温条件下で Ni の 電荷不均化による絶縁体化が起こることが期待され、実際図 1 に示すように、電気抵抗測定 でそのような現象が観測されている。電荷不均化は斜方晶 Pbnm→単斜晶 P2₁/n の結晶構造変 化を伴うため、回折実験で検出可能である。ダイヤモンドアンビルセルを用いた高圧・低温 条件下の放射光 X 線回折によって、BiNiO₃における Ni の電荷不均化を検証することを目的 として実験を行った。

<u>2. 方法</u>

あらかじめ立方体アンビル型高圧合成装置を用いて合成した BiNiO₃ 粉末を試料としてメ タノール/エタノールの圧媒体と共にダイヤモンドアンビルセルに封入、波長 0.4969 で回 折パターンを測定した。まずは試料を 5.8GPa まで昇圧後 50K まで冷却、その後室温へ昇温 して 4.18GPa まで減圧、再び 50K までの低温の測定を行った。

3. 研究成果

図 2 に代表的な回折パターンを示す。常圧ではビスマスが Bi³⁺と Bi⁵⁺の 2 サイトあること に対応して三斜晶の構造を持つが、4.3GPa では斜方晶になっている。これは粉末中性子回折 の結果と一致しており、Bi³⁺Ni³⁺O₃相であることを示している。4.3GPa 50K の回折パターン は単斜晶を仮定して指数付けすることができたが、a=5.6025(1)Å、b=5.2500(1)Å、 c=7.6213(2)Å、β=90.144(1)と、a>b であった。これは P2₁/n モデルとは相容れない。サブ グループを考えると、現在のところ、高圧・低温絶縁体相は P2₁/a であると考えている。こ のモデルでも Ni は2サイト存在するが、それらは層状に配列しているため、Ni の電化不均 化は考えにくい。また、図 3 に示す 4.3GPa での単位格子体積変化は、斜方晶相から単斜晶 相への転移に伴って、1.6%の体積減少があることを示している。これは、Ni3+→Ni2+への価 数転移が起こった、すなわち高圧低温絶縁体相は Bi⁴⁺Ni²⁺O₃であることを示唆している。

<u>4. 結論・考察</u>

BL22 で行った高圧・低温条件下での粉末X線回折実験により、金属絶縁体転移に伴う結晶 構造変化を検出することができた。しかしながら、低温絶縁体相は、予想していたようなNi が電荷不均化した P2₁/n 相ではないことが明らかになった。今後は 50K の低温で圧力掃引の 実験を行い、Bi³⁺0.5Bi⁵⁺0.5Ni²⁺03相から今回示唆された Bi⁴⁺Ni²⁺03相への転移の様子を調べたい。

<u>5.</u> <u>引用(参照)文献等</u>

[1] S. Ishiwata er al., J. Mater. Chem., 12 (2002) 3733.

[2] M. Azuma et al., J. Am. Chem. Soc., 129 (2007) 14433.