利用課題名:低次元量子スピン系における隠れたエネルギーギャップの観測

Observation of a hidden energy gap in a low-dimensional quantum spin system

長谷 正司¹⁾ 北澤 英明¹⁾ 辻井 直人¹⁾ 松田 雅晶²⁾ 加倉井 和久²⁾
Masashi HASE Hideaki KITAZAWA Naohito TSUJII Masaaki MATSUDA Kazuhisa KAKURAI

1)物材機構 2)原子力機構

 $Cu_3(P_2O_6OD)_2$ の磁化曲線には 1/3 磁化プラトーが現れ、磁気励起にギャップが存在することを意味している。今回、中性子非弾性散乱を測定することにより、ギャップの存在をより直接的に証明することができた。

<u>キーワード</u>: Cu₃(P₂O₆OD)₂、3 倍周期鎖、エネルギーギャップ、中性子非弾性散乱

1 . 目的

 $Cu_3(P_2O_6OD)_2$ の磁性は J_1 - J_2 - J_2 というパターンを持つスピン 1/2 の 3 倍周期鎖で説明できる[1]。磁化の温度と磁場依存性について、実験と計算の結果を比較することで、 $J_1=95$ K と $J_2=28$ K という値が得られている。磁化曲線には 1/3 磁化プラトーが現れ、磁気励起にギャップが存在することを意味している。 J_1 のほうが大きいので、スピン 1 重項 -3 重項ギャップのようなものと推測される。

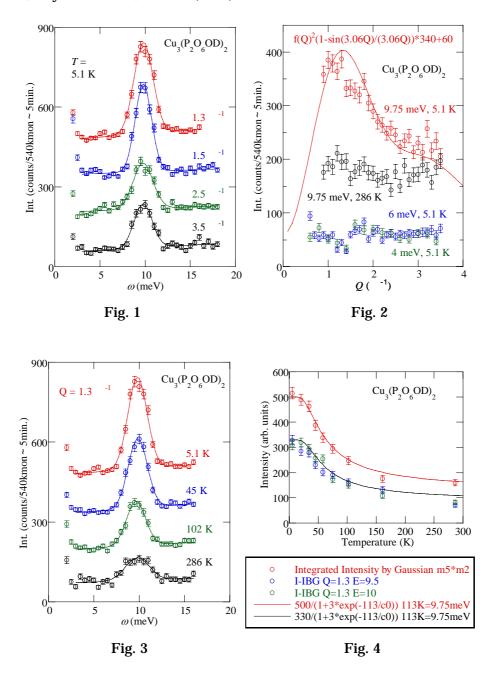
中性子非弾性散乱測定は、ギャップの存在を直接的に証明できる方法である。そこで我々は、Cu₃(P₂O₆OD)₂の粉末試料の中性子非弾性散乱を測定した。

2 . 方法

JRR-3 の TAS-2 分光器を用いて実験した。クローズド・サイクルの冷凍機を用いて、 $5.1~\mathrm{K}$ から室温の間で温度を調整した。

<u>3 . 研究成果</u>

Fig. 1 は、5.1 K での constant-Q scan の結果である。中心が 9.8 meV で、分解能と同程度の幅を持つ励起が見られた。Q を大きくすると、励起の散乱強度は小さくなるが、位置や領域は変わらない。従って、この励起は Q に依存しない準位間の遷移を見ていることになる。また、散乱強度の Q 依存性と後で示す温度依存性から、磁気励起であると言える。Fig. 2 は constant- ω scan の結果である。 ω = 9.75 meV、5.1 K では明瞭な Q 依存性が見られる。実線は反強磁性ダイマーモデルの計算結果である。ダイマー間距離を 3.06 としているが、これは J_1 相互作用での Cu-Cu 距離である。1.3 -1 付近でのピークは実験でははっきりとは見られていないが、実験と計算結果は大体合っている。


Fig. 3 は、Q=1.3 $^{-1}$ での constant-Q scan の結果である。温度が上昇すると、磁気励起の散乱強度は小さくなるが、位置や領域は変わらない。Fig. 4 は強度の温度依存性である。各温度のスペクトルをガウシアンで fit することで計算した積分強度を赤丸で、9.5 と 10 meV での強度を青と緑丸で示す。実線はエネルギーギャップを 9.75 meV = 113 K と考えた場合の反強磁性ダイマーモデルの計算結果である。実験結果を再現している。

4 . 結論・考察

実験前の予想通り、起源が反強磁性ダイマーであるようなスピン 1 重項 - 3 重項ギャップが観測できた。ギャップの値は当初の予測(8.1 meV = 92 K)よりは大きかった。磁化の温度と磁場依存性だけでなく、ギャップの値も再現できるように、 J_1 と J_2 の値を見直して、 $J_1 = 111 \text{ K}$ と $J_2 = 30 \text{ K}$ という値を得た。

5 . 引用(参照)文献等

[1] M. Hase et al., Phys. Rev. B 73, 104419 (2006).

